• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Informatik 7 CS7
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • English
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität Lehrstuhl für Informatik 7 CS7
Menu Menu schließen
  • Lehrstuhl
  • Forschung
  • Publikationen
  • Lehre
  • Kooperationspartner
  1. Startseite
  2. Forschung
  3. Quality-of-Service and Connected Mobility
  4. Forschungsprojekte

Forschungsprojekte

Bereichsnavigation: Forschung
  • Quality-of-Service and Connected Mobility
    • Forschungsprojekte
    • Gruppenmitglieder
    • Publikationen
  • Network Security
  • Smart Energy
  • Frühere Projekte

Forschungsprojekte

Quality-of-Service and Connected Mobility

(Projekt aus Eigenmitteln)

Abstract:

Network Calculus (NC) ist ein systemtheoretischer Ansatz zur deterministischen Leistungsanalyse. Dabei kommen mathematische Methoden zum Einsatz, um Leistungsgarantien für Kommunikationssystemen bestimmen zu können. Die Methode kann sowohl in der Planungsphase für zukünftige Systeme als auch bei der Analyse bestehender Systeme eingesetzt werden. In Echtzeitsystemen spielt die Rechtzeitigkeit bestimmter Ereignisse eine entscheidende Rolle. Daher ist es wichtig, die Ergebnisse klassischer Leistungsanalyse, die stochastische Erwartungswerte wie etwa Mittelwerte liefert, durch mathematische Methoden zu ergänzen, die garantierte Schranken für Worst-Case-Szenarien liefern können. Network Calculus ermöglicht die Bestimmung von oberen Grenzen für Ende-zu-Ende-Verzögerungen für einzelne Netzwerkknoten und Folgen von Knoten in einem Netzwerk, Obergrenzen für die benötigten Puffer und Grenzen für den ausgehenden Verkehr. Diese analytischen Grenzen charakterisieren das Verhalten im Worst-Case und erlauben eine korrekte Dimensionierung der Systeme.

Aktuell studieren wir die Grenzen der Anwendbarkeit von Network Calculus für das Multiplexen von Datenströmen, insbesondere, wenn die Aggregation von Strömen nicht nach dem FIFO-Prinzip erfolgt. Die Aggregation von Strömen spielt eine wichtige Rolle, wenn Multiplex-Verfahren modelliert werden. Wir setzen Network Calculus beim Multiplexen an einzelnen Knoten und bei der Hintereinanderschaltung mehrerer Knoten in einem Netzwerk ein.

Wir haben Methoden des Network Calcus erfolgreich in industriellen Anwendungen der internen Fahrzeugkommunikation eingesetzt. Eingebettete Netze in Fahrzeugen müssen harte Echtzeitbedingungen erfüllen. Während TDMA-Verfahren wie in FlexRay die Erfüllung von Grenzen garantieren, erlaubt das stochastische Multiplexen in CAN-Netzen lediglich die Bestimmung von Grenzen für die höchste Priorität. Durch die Anwendung von Network Calculus können wir Grenzen für alle Prioritätsklassen bestimmen, ohne dass wir einen konkreten Kommunikationsablauf vorgeben müssen. Es genügt für die Bestimmung der harten Echtzeitgrenzen, wenn lediglich obere Grenzen für die Menge der an den Knoten ankommenden Daten bekannt sind.

Ein weiteres Einsatzgebiet für Network Calculus ist die industrielle Kommunikation. In der Industrieautomatisierung sind meist auch harte Grenzen für die Ende-zu-Ende-Verzögerung gefordert. Der Einsatz von Ethernet mit unterschiedlichen Prioritätsklassen erlaubt eine kostengünstige Implementierung solcher Fabrikautomatisierungssysteme. Aber ohne strikte Planung der Netze können die geforderten Verzögerungsgrenzen aufgrund des statistischen Multiplexens nicht garantiert werden. Wird Network Calculus bereits in der Planungsphase solcher Netze eingesetzt, können die Netze so dimensioniert werden, dass alle nötigen Grenzen eingehalten werden können. Neben den Verzögerungszeiten können auch die benötigten Puffergrößen in Knoten wie etwa in Industrial Ethernet Switches begrenzt werden. Aktuell fordern einige Anwender von Industieautomatisierungslösungen die einfache Integration von nicht echtzeitfähigen Komponenten in bestehende Netze, sei es von IP-Kameras oder von Bedienterminals. Ohne zusätzliche Analysen kann der Verkehr der zusätzlichen Geräte die Echtzeitkommunikation derart stören, dass bestehende Grenzen für die Verzögerung und den Puffer von Echtzeitverkehr nicht mehr eingehalten werden können. Durch Berücksichtigung des Nicht-Echzeitverkehrs in Network Calculus und durch Verkehrsformung dieser Datenströme können die Netze so dimensioniert werden, dass die Grenzen weiterhin eingehalten werden. Aktuell werden Netwok-Calculus-Berechnungen in ein bestehendes automatisiertes Netzwerkplanungswerkzeug integriert.

→ Mehr Informationen

TSN-Logo
TSN-Logo

(Projekt aus Eigenmitteln)

Abstract:

Dieses Forschungsprojekt beschäftigt sich mit Anwendungsmöglichkeiten von Dienstgütegarantien in Time-Sensitive Networking, insbesondere mithilfe von Network Calculus. Echtzeit-Systeme werden zunehmend in der Industrie, z.B. der Automobil-, Automatisierungs- oder Unterhaltungsbranche benötigt. Klassisches Ethernet garantiert jedoch keine Echtzeitfähigkeit, weshalb die Time-Sensitive Networking Task Group (IEEE 802.1) Standards für die Echtzeitübertragung von Daten über Ethernet-Netzwerke entwickelt. Diese Standards werden unter dem Begriff Time-Sensitive Networking (TSN) zusammengefasst. Im Rahmen dieses Forschungsprojektes wird nun die Anwendung von Network Calculus für TSN untersucht. Network Calculus (NC) ist eine Systemtheorie zur deterministischen Leistungsbewertung. Dabei werden mathematische Methoden verwendet, um Leistungsgarantien für Kommunikationssysteme zu bieten.  NC kann dabei helfen, Echtzeit-Eigenschaften von TSN zu bewerten, erforderliche Latenz-Grenzen einzuhalten und Aufschlüsse über die optimale Konfiguration der Netzwerke liefern. Außerdem ermöglicht es die Dimensionierung der Puffer und kann existierende oder neue Scheduling-Algorithmen bewerten.

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

Als Teil eines großen Konsortiums befasst sich der Lehrstuhl Informatik 7 im Rahmen des Projekts mit dem modellbasierten Systementwurf der Fahrzeug-Kommunikationssysteme unter Einbezug von Variantenvielfalt. Hierfür wird zum einen eine Optimierung für die Konfiguration und die Ressourcenauslegung der Netzwerkarchitektur für verschiedene Kommunikationsprotokolle und -mechanismen realisiert. Zum anderen werden Safety-Analysen unter Verwendung von Fehlerbäumen und Erweiterung dieser für Produktlinien durchgeführt.
Für den formalen Nachweis der erforderlichen Echtzeiteigenschaften wird Network Calculus herangezogen. Dafür müssen geeignete Ansätze für die in den Vernetzungstechnologien verwendeten Scheduling-Verfahren (z.B. TAS, prioritätsbasiert, CBS, usw.) formuliert werden.Für eine automatisierte und beschleunigte Erstellung der Netzwerkoptimierungen und der Safety- und Echtzeit-Analysen werden Modell- und Codegeneratoren entwickelt. Die Ergebnisse dieser Auswertungen werden in die Modellierung des Gesamtsystems zurückgeführt.

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

In Übertragungsnetzenermöglicht eine dedizierte und leistungsfähige Kommunikationsinfrastruktur einegleichzeitige Ausführung kommunikationsintensiver Funktionen und Dienste. Durchden Ausbau erneuerbarer Energieanlagen auf Nieder- und Mittelspannungsebene undder dadurch notwendigen Verlagerung der Systemverantwortung hin zu diesenAnlagen und deren Betreibern müssen vergleichbare Funktionen und Dienste –sogenannte Smart Grid Services (SGSs) – auf Verteilnetzebene umgesetztwerden. In diesem Projekt werden Methoden zur Online-Rekonfiguration desKommunikationsnetzes auf Verteilnetzebene erforscht, die auf einem zweistufigenAnsatz für QoS-Bereitstellung basieren: Im ersten Schritt wird eine diskreteOptimierung verwendet, um auf der Basis einer topologischen Sicht auf dieRechen-, Speicher- und Kommunikationsressourcen eine Zuordnung von SGSs aufverfügbare Server und eine Flow Allocation im Kommunikationsnetzwerk zu finden.Im zweiten Schritt wird Network Calculus genutzt, um analytischsicherzustellen, dass alle kritischen SGSs ihre QoS-Anforderungen erfüllenkönnen. Der Effekt des zweistufigen Ansatzes für QoS-Bereitstellung wird dann simulativevaluiert. Die FAU konzentriert sich in derKooperation vorwiegend aus die Kommunikations- und QoS-Aspekte, während die UniversitätOldenburg in enger Zusammenarbeit überwiegend die Auswirkungen auf dasEnergienetz und die Rekonfiguration der Smart Grid Services betrachtet.

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

Die Kooperation der Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg mit der ND SatCom GmbH hat im Vorhaben QUICSAT das gemeinsame Ziel, Internetprotokolle und Anwendungen für geostationäre Satellitenverbindungen zu verbessern.Hierzu soll das Potenzial neuer Technologien (AQM, ECN, BBR und insbesondere QUIC) untersucht werden. Ultimatives Ziel ist es, dass Internet über Satellit eine ähnliche Performance wie terrestrische Internetanschlüsse aufweist.Die hohe Latenz bei Internet mit geostationären Satelliten, die momentane Architektur von Internetprotokollen sowie die stets steigende Komplexität von Internetanwendungen (insbesondere bei Webseiten) sind der Grund dafür, dass die Performance von Satelliteninternet geringer als die Performance von terrestrischen Internetanschlüssen ist, auch wenn die Datenraten vergleichbar sind. Neuere Quality of Service-Mechanismen (QoS), wie sie für das Internet entwickelt wurden, finden bei der Satellitenkommunikation momentan noch keine Anwendung. Bei QUIC (potenzieller Nachfolger für TCP) besteht zudem die Gefahr, dass sich aufgrund der Nichtanwendbarkeit von PEPs die Performance von Satelliteninternet sogar verschlechtert.Das Projekt liefert einen Beitrag zur Protokollerforschung, Standardisierung und bei begleitenden Referenz-Implementierungen.

Externe Partner:

  • ND SatCom GmbH

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

The TCP performance over satellite communications has become a well-known problem, following significant experimentation with Internet services over satellite since the '90s. Several tailored TCP optimisations have been introduced (mainly implementing changes at the sender side, but also at the receiver side in some proposals). In parallel, given the challenge of installing tailored TCP versions directly in the end user system, a set of architectural extensions have been introduced culminating in the concept of a Performance Enhancing Proxy (PEP, RFC 3135), whereby a native end-to-end TCP connection is now commonly split into a series of multiple connection (a split TCP concept). This allows a tailored TCP to be deployed on the satellite link (i.e., between the satellite terminals and gateways to be optimised). Though largely used since the early 2000's, PEPs have always been unable to enhance non-TCP protocols or VPN connections traversing the satellite network segment. Application-layer compression and acceleration was also provided in some PEPs.

Since 2000, there has been a continued effort to evolve the protocol stack for Internet web services, with several updates to the protocols for HTTP-based services. A design of HTTP by Google, known as SDPY, was standardised as HTTP/2. This provided significant improvements in download speed of satellite, but at the same time deployed application-layer encryption and compression – making application-layer acceleration dependent on using an authenticated proxy and impossible within a PEP.

A more recent Google proposal (known as gQUIC) sought a transport other than TCP that uses a UDP substrate with transport encryption. This effort evolved in standardisation by the Internet Engineering Task Force (IETF) and was finally published as IETF QUIC (RFC 9000) in 2021. QUIC is specified for use with HTTP/3, a replacement for HTTP2/TCP. The main leap from classical HTTP services over TCP is in that QUIC uses encrypted datagram connections, with congestion control, flow control, NAT-rebinding and migration algorithms directly implemented within the QUIC protocol. Following standardisation, QUIC and HTTP/3 have been implemented and have been rapidly deployed to the Internet.

Hence, the design rationale of QUIC intrinsically prevents using a classical PEP solution for the optimisation of performance over a satellite system.  Whilst the application-layer performance of HTTP/3 resembles or improves on that of HTTP/2, and the transport design has been shown to operate correctly over satellite with respect to initialisation, protocol timers, and other core functions, experiments have shown that performance of QUIC operated end-to-end over paths comprising a satellite network segment can be lower than offered by TCP using a PEP. This has motivated the scientific community and the satellite industry to think of alternative solutions for QUIC congestion control (CC) to accelerate with the QUIC performance degradation, which is still now at the early stages. QUIC has also been suggested for other applications.

The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt), University of Aberdeen, and Friedrich-Alexander-Universität Erlangen-Nürnberg have built a consortium that is committed to thoroughly analyse the existing approaches and options to improve the performance of TCP over satellite network segment and apply the most appropriate concepts to QUIC congestion control mechanisms as well as understanding the implications of deploying the new approaches as a part of a secure end-to-end architecture. As a result, a novel algorithm will be defined and then verified against the relevant technical requirements. Finally, the resulting new QUIC specifications will be validated using real satellite trials in exemplar scenarios.

Externe Partner:

  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) / German Aerospace Center
  • University of Aberdeen

→ Mehr Informationen

5G-AUTOSAT_KI Logo
5G-AUTOSAT_KI Logo

(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

Abstract:

Die Kooperation bestehend aus Airbus Defence and Space GmbH, Fraunhofer Institut für Integrierte Schaltungen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg und der ZF Friedrichshafen AG hat das gemeinsame Ziel, die Konnektivität für automobile Anwendungen in hybriden Satelliten und terrestrischen 5G Netzwerken mittels künstlicher Intelligenz zu erforschen und optimieren.

Die FAU arbeitet hierzu schwerpunktmäßig an Konzepten zur Integration automobiler Anwendungen, der Erstellung eines Simulationsmodells zur Kombination von Fahrzeug- und Satellitenkommunikation, der Einbindung von KI-Algorithmen, der Leistungsbewertung und Optimierung von Quality-of-Service relevanten Netzwerk- und Protokollaspekten sowie der Umsetzung in einem Echtzeit-Demonstrator. Ergebnisse sollen bei wissenschaftlichen Konferenzen vorgestellt werden und in die Standardisierung von 5G und zukünftigen 6G Netzwerken eingebracht werden.

Externe Partner:

  • Fraunhofer-Institut für Integrierte Schaltungen (IIS)
  • Airbus Defence and Space GmbH
  • ZF Friedrichshafen AG

→ Mehr Informationen

(FAU-externes Projekt)

Externe Partner:

  • Zukunft Mobility GmbH (a company of ZF Group)

→ Mehr
Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

Satellite communication is a way to provide broadband internet access all over the world. However, with geostationary satellites the propagation delay leads to very high delays in the magnitude of several hundred milliseconds. In order to improve the interactivity and responsiveness of communication systems, utilizing a second communication link can be highly beneficial.

The Transparent Multichannel IPv6 (TMC-IPv6) Project aims to combine the advantages of multiple heterogeneous communication links. An illustrative example is the combination of a rural DSL connection with low data rate/low latency and a satellite connection with high data rate but high latency, which results in a user internet access with high data rate and low latency providing a better Quality of Experience (QoE).

Satellite-based internet access from different operators is provided by our project partners in order to experience realistic satellite communication environment and test potential solutions. The outdoor unit (parabolic antenna) is mounted on the roof of the Wolfgang-Händler-Hochhaus.

→ Mehr Informationen

(FAU-externes Projekt)

Abstract:

In dieser Arbeit wird die Leistungsfähigkeit verschiedener Anwendungen über verschiedene Internetzugänge bewertet, mit Fokus auf den Internetzugang über Satellit.

Konkret wurden folgende Zugangstechnologien ausgewählt:

  • Geostationäre Satelliten (Konnect/Eutelsat, skyDSL/Eutelsat, Bigblu/Eutelsat, Novostream/Astra)
  • Satelliten-Megakonstellation in niedriger Umlaufbahn (Starlink)
  • Terrestrische Systeme als Referenz (o2 DSL, Congstar LTE)

Externe Partner:

  • European Space Agency (ESA), Netherlands
  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) / German Aerospace Center

→ Mehr Informationen

(Projekt aus Eigenmitteln)

Abstract:

Das elektrische Energienetz befindet sich durch Digitalisierung und Integration dezentraler Energiequellen im Wandel. Die Durchdringung und informationstechnische Vernetzung mit Sensorik und Aktorik lassen komplexe virtuelle Steuerungssysteme entstehen.
Liegt dem ein leistungsfähiges Kommunikationsnetz zugrunde, können innovative Dienste und Anwendungen eine ökologische, ökonomische, stabile und hochwertige Energieversorgung ermöglichen. Die vielfältigen, teils echtzeitkritischen, Anforderungen und Verkehrsmuster der gegebenenfalls großräumig verteilten Anwendungen stellen dabei eine besondere Herausforderung dar.
Untersuchungsgegenstand dieses Forschungsprojekts ist der Ersatz proprietärer Lösungen durch ein programmierbares Kommunikationsnetz mit Standardkomponenten. Diese ermöglichen einen wirtschaftlichen Betrieb und hohe Kompatibilität, individuellen Anforderungen werden durch Software erfüllt. Übergeordnetes Ziel ist dabei, die Infrastruktur der Energie- und Kommunikationsnetze gleichermaßen optimal zu nutzen und Überdimensionierung zu minimieren.

→ Mehr Informationen

Connected Mobility bis 31.07.2025

Modellierung und Simulation von dreidimensionalen Fahrzeug-Ad-Hoc-Netzwerken

(Projekt aus Eigenmitteln)

Projektleitung: Reinhard German, Anatoli Djanatliev
Projektbeteiligte: Alexander Brummer
Projektstart: 2017-10-01
Projektende: 2022-09-30

Abstract:

Die Möglichkeiten und Herausforderungen der Fahrzeug-zu-X-Kommunikation (Vehicle-to-X- bzw. V2X-Kommunikation) werden bereits seit vielen Jahren erforscht. Ein beliebtes Mittel, das bei relativ hoher Detailtreue ausreichend Flexibilität bei den Untersuchungen zulässt, ist die Simulation solcher Netzwerke, welche sowohl den Verkehrs- als auch den Kommunikationsaspekt berücksichtigen muss. Mit dem am Lehrstuhl entwickelten Framework Veins konnten hierbei bereits große Erfolge erzielt werden.
Eine Einschränkung aktueller V2X-Simulationsframeworks ist die Annahme einer quasi-zweidimensionalen Umgebung. Die verschiedenen Einflüsse der Geländeform, anderer Verkehrsteilnehmer oder auch die Kommunikation über mehrere Straßenebenen hinweg bleiben üblicherweise unberücksichtigt. Viele reale Verkehrsszenarien und somit Fahrzeugnetzwerke haben aufgrund der genannten Aspekte jedoch einen dreidimensionalen Charakter, weshalb angenommen werden muss, dass diese somit nur eingeschränkt mit bisherigen Simulatoren analysiert werden können.
In diesem Projekt soll untersucht werden, ob die oben genannte Annahme zutreffend ist. Hierfür bedarf es einer Erweiterung der klassischen paketbasierten V2X-Simulation, um die Problemstellungen solcher Szenarien mit vielen Fahrzeugen simulieren zu können. Dabei sind auch neue Kanalmodelle zu entwickeln, die den dreidimensionalen Charakter komplexer Szenarien unter begrenztem Aufwand möglichst realistisch abbilden können. Zur Sicherstellung korrekter Ergebnisse bedarf es dabei entsprechender Feldtests zur Validierung der neuen Simulationsmodelle. Des Weiteren soll mithilfe geeigneter Methoden und ggf. KI-Verfahren der Aufwand bei der Betrachtung komplexer Simulationsszenarien beherrschbarer gemacht werden.

Publikationen:

  • Brummer A., Djanatliev A.:
    Towards the Evaluation of Three-Dimensional Scenarios in VANET Simulation
    5th GI/ITG KuVS Fachgespräch Inter-Vehicle Communication (FG-IVC 2017) (Erlangen, 2017-04-06 - 2017-04-07)
    In: Djanatliev A., Hielscher K.-J., Sommer C., Eckhoff D., and German R. (Hrsg.): Proceedings of the 5th GI/ITG KuVS Fachgespräch Inter-Vehicle Communication (FG-IVC 2017)}, Erlangen: 2017
    URL: https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/8528
    BibTeX: Download
  • Brummer A., German R., Djanatliev A.:
    On the Necessity of Three-Dimensional Considerations in Vehicular Network Simulation
    14th Annual Conference on Wireless On-demand Network Systems and Services (WONS) (Isola 2000, 2018-02-06 - 2018-02-08)
    In: Proceedings of the 14th IEEE/IFIP Conference on Wireless On demand Network Systems and Services (WONS 2018) 2018
    DOI: 10.23919/WONS.2018.8311665
    URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8311665&isnumber=8311646
    BibTeX: Download
  • Eckhoff D., Brummer A., Sommer C.:
    On the Impact of Antenna Patterns on VANET Simulation
    8th IEEE Vehicular Networking Conference (VNC 2016) (Columbus, OH, 2016-12-08 - 2016-12-10)
    In: Proceedings of the 8th IEEE Vehicular Networking Conference (VNC 2016) 2016
    DOI: 10.1109/VNC.2016.7835925
    URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7835925
    BibTeX: Download
  • Brummer A., Deinlein T., Hielscher KS., German R., Djanatliev A.:
    Measurement-Based Evaluation of Environmental Diffraction Modeling for 3D Vehicle-to-X Simulation
    10th IEEE Vehicular Networking Conference (VNC 2018) (Taipei, 2018-12-05 - 2018-12-07)
    In: Proceedings of the 10th IEEE Vehicular Networking Conference (VNC 2018) 2018
    DOI: 10.1109/VNC.2018.8628418
    URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8628418&isnumber=8628314
    BibTeX: Download
  • Brummer A., German R., Djanatliev A.:
    Modeling V2X Communications Across Multiple Road Levels
    90th IEEE Vehicular Technology Conference (VTC2019-Fall), 2nd IEEE Connected and Automated Vehicles Symposium (CAVS 2019) (Honolulu, HI, 2019-09-22 - 2019-09-25)
    In: Proceedings of the 90th IEEE Vehicular Technology Conference (VTC2019-Fall), 2nd IEEE Connected and Automated Vehicles Symposium (CAVS 2019) 2019
    DOI: 10.1109/CAVS.2019.8887793
    BibTeX: Download

→ Mehr Informationen

(Projekt aus Eigenmitteln)

Abstract:

Simulation ist ein adäquates Mittel, welches erlaubt neuartige Technologien und Algorithmen zu untersuchen, zu evaluieren und zu validieren. Um zu realistischen Ergebnissen zu gelangen, ist es erforderlich diverse Herausforderungen zu meistern. Eine dieser Herausforderungen stellt die  Durchführbarkeit der Berechnung von ganzheitlichen Simulationszenarien dar. Dies gilt vor allem, wenn Szenarien betrachtet werden sollen, die beispielsweise eine ganze Stadt, oder gar ein ganzes Land modellieren. Neben Betrachtungen der Performanz, bedarf die angemessene Modellierung von Szenarien der echten Welt meist der Kombination verschiedener Simulationswerkzeuge. Oft stammen die kombinierten Werkzeuge aus verschiedenen Domänen. Das führt dazu, dass ihre Kombination im Allgemeinen auch die Verbindung unterschiedlicher Modellierungsparadigmen erfordert. Zwei weitere Herausforderungen stellen die Zeitsynchronisation beteiligter Tools und der Datenaustausch zwischen den Tools dar.
Um diese Problemstellungen zu lösen, wird im Rahmen dieses Projekts ein hybrides Co-Simulations Framework entwickelt. Das Framework nutzt eine Implementierung der High Level Architecture (HLA, IEEE1516) als Middleware und erlaubt die dynamische Komposition eines Simulations-Setups, welches den bestehenden Anforderungen entspricht. Die Komposition erfolgt in zwei Dimensionen. In einer vertikalen Dimension gestattet Multi-Level Unterstützung die Simulation zu verschiedenen Detailgraden. Dies erfolgt je nach Anforderungen bezüglich Performanz, bestehender Datengrundlage und den formulierten Fragestellungen. In einer horizontalen Dimension erfolgt die Modellierung der domänenübergreifenden Kopplung von Simulationswerkzeugen. Der Fokus auf Erweiterbarkeit stellt sicher, dass die nachträgliche Eingliederung benötigter Simulationstools in das Framework ermöglicht wird.

→ Mehr Informationen

(FAU-externes Projekt)

Abstract:

Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen.  Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl  von Verkehrssituationen, sog. Szenarien, abzuprüfen.  Dieser umfangreiche Prüfumfang lässt sich in Zukunft nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validität und Praxisrelevanz zu erzeugen, müssen Modelle des eigenen Fahrzeugs, der Strecken und –Umgebung sowie des umgebenden Verkehrs adäquat modelliert werden.

Im Rahmen dieser Arbeit soll eine Methodik zur Absicherung von Systemen und Funktionen des automatisierten und vernetzten Fahrens mittels Computersimulation auf virtuellen Streckenmodellen konzipiert und prototypisch entwickelt werden. Aspekte, die dabei Berücksichtigung finden sollen, sind Qualitätsanforderungen an das Streckenmodell hinsichtlich unterschiedlicher Sensor- und Reglerfunktionen, erforderliche Parameter/Dimensionen für die darzustellenden (Verkehrs-)Szenarien, Klassifizierung der Ähnlichkeit/Genauigkeit von digitalen Zwillingen (Simulation und Versuchsfahrzeug) oder auch eine Validierungssystematik für solch ein virtuelles Umfeldmodell.
Aufbauend auf die Anforderungen an die Simulation und den Spezifikationen an das virtuelle Streckenmodell soll ein systematisches und belastbares Verfahren zur simulationsbasierten Absicherung von automatisierten Fahrfunktion erarbeitet werden.

Externe Partner:

  • Audi AG

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

Zukünftige Fahrfunktionen benötigen Multi-Sensorsysteme, deren Zuverlässigkeit durch Methoden der Sensordatenfusion (Aggregation, Filterung, Mehrheitsentscheidung und weitere Mechanismen zur Fehlervermeidung) gesteigert werden müssen. Dadurch treten Fehler sehr selten auf, es existieren jedoch Abhängigkeiten der Fehler von aufeinanderfolgenden Sensorwerten („Fehlerbursts“) und auch Abweichungen zwischen Sensoren (z.B. bei schlechten Umgebungsbedingungen).

Für eine Auslegung hinsichtlich der Sicherheit müssen Fehlerwahrscheinlichkeiten von Multi-Sensorsystemen bestimmt werden. Sowohl ein bestehendes analytisches Modell basierend auf Markov-Ketten als auch ein Simulationsmodell für Multi-Sensorsysteme ausgebaut werden, um die zu bestimmen.

In diesem Projekt soll auf den Vorarbeiten des INI.FAU-Projekts aufgebaut werden und sowohl das bestehende analytische Modell basierend auf Markov-Ketten als das Simulationsmodell für Multi-Sensorsysteme ausgebaut werden. Die angestrebten wissenschaftlichen Erkenntnisse bestehen in der Weiterentwicklung des analytischen Markov-Modells, das bereits Fehlerbursts einzelner Sensoren sowie Abhängigkeiten zwischen zwei Sensoren berücksichtigt, dem Ausbau auf mehr Sensoren, der Berücksichtigung weiterer Fehlervermeidungsstrategien und einer Werkzeugumsetzung. Weiterhin sollen Erkenntnisse beim Einsatz von Rare-Event-Simulation erzielt werden, um detailliertere Simulationsmodelle von Multi-Sensorsystemen in praktikablen Laufzeiten auszuführen und damit statistisch gesicherte Ergebnisse abzuleiten. Die Simulation erlaubt eine noch realistischere Systemnachbildung und eine Validierung der analytischen Modellierung. Es entsteht eine wissenschaftlich fundierte Methodik zur Ermittlung der Zuverlässigkeit von Multisensorsystemen.

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

Fahrzeuge werden mehr und mehr zur mobilen Datenplattform. Neben der Mobilität als Hauptaufgabe nimmt der Anspruch an Unterhaltung, Konnektivität und aktueller Software im Fahrzeug deutlich zu. Neben der Datenaktualisierung in der Werkstatt wird bereits heute ein Mobilfunkmodul im Fahrzeug verbaut, über das Kartenupdates, Verkehrsinformationen und Entertainmentanwendungen betrieben werden. Der Mobilfunk hängt allerdings stark von der vorhandenen Netzinfrastruktur ab und kann in einigen Bereichen ausfallen. Zudem muss dem Netzbetreiber für die Verwendung ein meist datenvolumenabhängiges Entgelt entrichtet werden. In diesem Projekt sollen daher weitere Technologien evaluiert werden, um auch in Zukunft effektive Kommunikation zu ermöglichen. Potenzial bieten hier öffentlich verfügbare WLAN Hotspots, die auch im Straßenbereich zur Verfügung stehen und zumeist kosteneffektiv genutzt werden können. Zudem benötigen die Fahrzeuge ähnliche Informationen, da beispielsweise ein Kartenupdate auf viele Fahrzeuge im Feld gebracht werden soll. Daher bietet sich auch die direkte Kommunikation zwischen Fahrzeugen in 5G als Möglichkeit, Informationen im Feld auszutauschen und die Verwendung des Mobilfunknetzes zu reduzieren. Ziel ist es die Kombination verschiedener Technologien zu einem komplexen heterogenen Fahrzeugnetz zu testen und die Verwendbarkeit opportunistischer Netze zu evaluieren. Dabei sollen Vorschläge für zukünftige Standardisierungen erarbeitet werden. Aus wissenschaftlicher Sicht sind geeignete Koordinations- und Routingmechanismen notwendig, da die Verbindungszeiten im Feld sehr gering ausfallen, Fahrzeuge als Zwischenspeicher und Quelle fungieren und eine effektive Nutzung der Übertragungswege relevant ist.

→ Mehr Informationen

(FAU-externes Projekt)

Externe Partner:

  • Audi AG

→ Mehr Informationen

(FAU-externes Projekt)

Abstract:

Perspektivisch wird Datenverkehr nicht mehr ausschließlich zwischen Cloud bzw. einem Server in einem Rechenzentrum und einem mobilen Endgerät stattfinden. Kommunikation zwischen Geräten wird vielmehr auf Basis von Anwendungsbeziehungen direkt aufgebaut werden, um immersive Anwendungen, automatisiertes Fahren oder Virtual Reality zu realisieren. Hierzu folgen der 5G Mobilfunkstandard und zukünftige Netzwerktechnologien in ihrem Design zunehmend dem Data-Centric Paradigma, in dem unter anderem auch die steigende Relevanz von direkter Gerätekommunikation eine Berücksichtigung findet. Eine weitere elementare Entwicklung trägt ebenfalls dazu bei: Rechen- oder Informationsressourcen werden nicht länger ausschließlich von Cloud-Servern zur Verfügung gestellt.
Multi-Access Edge Computing (MEC) ist Bestandteil aktueller Forschung und beschäftigt sich mit der Bereitstellung von Ressourcen auf verteilen Edge Knoten. MEC Instanzen können beispielsweise nah an Basisstationen angesiedelt sein, um Anwendungen mit besonderen Anforderungen, wie geringe Latenz, geringvarianter Jitter, hohe Bandbreiten oder Datenschutzanforderungen nah am Endgerät zu bedienen. Mit der Zeit werden Services enstehen, deren Komponenten buchstäblich überall und verteilt bereitgestellt werden können - ohne dass eine zwingend hierarchische Netztopologie berücksichtigt werden muss. Neben einer Cloud-Instanz kann ein Service demnach auch auf der Edge-Instanz in der Nähe, also z.B. einer Mobilfunk-Basisstation, einem Verkehrsleitsystem oder sogar einem benachbarten User Equipment (UE), betrieben werden. Auch Multi-Level MEC Konstellation sind möglich. Ein homogener Technologie-Stack, der das Cloud-Computing erweitert, ermöglicht eine Daten-zentrische Architektur, die gleichzeitig strenge Service-Anforderungen berücksichtigen kann.Die enstehende Architektur kann dabei aus zwei Perspektiven betrachtet werden. Mit Blick auf die Netzwerkkommunikation sind MEC Resourcen über nur wenige Links bzw. Hops erreichbar. Durch diese geographische bzw. topologische Nähe werden die Links nicht überlastet, was in den genannten Performance-Vorteilen resultiert. Mit Blick auf die bereitgestellten Services, kann ein MEC-Orchestrator dynamisch Service Deployments auf Rechenknoten auf die jeweils aktuelle Situation anpassen und Ressourcen in die Topologie einbinden oder beispielsweise zur Einsparung von Energie entfernen. Neben Orchestrationsentscheidungen führt auch die Fortbewegung von Teilnehmern zu einer Änderung der Netzwerktopologie. Um das volle Potential von MEC auszuschöpfen und somit auch Dienste betreiben zu können, die auf MEC Resourcen angewiesen sind, müssen beide Perspektiven sinnvoll miteinander kombiniert werden.In statisch aufgebauten Umgebungen lassen sich MEC Resourcen meist gut vorausplanen. Eine Herausforderung wird es insbesondere, wenn die genannten dynamischen Topologieänderungen oder Mobilität der UEs das Gesamtsystem beeinflussen. Eine der Kernfragen, die sich stellt, ist: Können die Kommunikationsanforderungen von MEC-abhängigen Diensten, die zur reibungslosen Umsetzung des Dienstes nötig sind, zu jedem Zeitpunkt eingehalten werden? Das Forschungsprojekt beschäftigt sich mit der Auswahl der besten MEC-Resourcen, zum Beispiel aus UE Sicht, sowie den, aus Netzwerksicht, besten Lokationen für Orchestratoren, um die Dienste bereitzustellen. Der Fokus liegt hierbei insbesondere auf der aktuellen Netzwerk- und Topologiesituation in Kombination mit den strengen Kommunikationsanforderungen von Diensten, die MEC-Resourcen benötigen. Es werden Strategien und Algorithmen, beispielweise auf Basis von Graphen, entwickelt, implementiert und evaluiert. Eine Verifikation findet durch system-level Simulationen und realen Einsatz statt.

Externe Partner:

  • Fraunhofer-Institut für Integrierte Schaltungen (IIS)

→ Mehr Informationen

(Projekt aus Eigenmitteln)

Abstract:

Die Vernetzung von Fahrzeugen mit anderen Verkehrsteilnehmen bzw. der Infrastruktur (Vehicle-to-Everything (V2X)) ist eine der Schlüsseltechnologien für das autonome Fahren und Smart Cities. Der hierfür entwickelte WLAN-Standard IEEE 802.11p ist bereits seit einem Jahrzehnt Schwerpunkt der Forschung. Bislang hat sich diese Kommunikationstechnologie in der Automobilbranche jedoch nicht als Kommunikationsstandard durchsetzen können. Ein möglicher Grund hierfür ist die nicht vorhandene stationäre Infrastruktur (Basisstationen am Straßenrand oder an Ampeln), welche hohe Investitionen erfordern würden.

Viele Automobilhersteller fokussieren ihren Forschungsschwerpunkt deshalb auf Mobilfunktechnoligen der neuesten Generation. Die benötigte Infrastruktur ist aufgrund anderer Mobilfunkteilnehmer flächendeckend vorhanden. Bei LTE wurden bereits Spezifikationen für die direkte Kommunikation zwischen Fahrzeugen sowie die Kommunikation über eine Basisstation verabschiedet. Die neueste Mobilfunkgeneration (5G), welche ab dem Jahr 2020 eingeführt werden soll, berücksichtigt hier von Beginn an Anwendungsfälle und Kriterien für die V2X-Kommunikation. Hierbei sollen bei 5G die Virtualisierung der Mobilfunkkomponenten per Network Slicing in Verbindung mit SDN und NFV eine entscheidende Rolle zur Einhaltung von Dienstgüteparametern gegenüber LTE und WLAN spielen.

Für die Simulation von Szenarien der V2X-Kommunikation per WLAN IEEE 802.11p ist das am Lehrstuhl entwickelte Framework Veins bei zahlreichen Studien eingesetzt worden. Um Vergleiche zwischen WLAN und Mobilfunk per Simulation zu evaluieren, ist eine Weiterentwicklung von Veins um die Mobilfunktechnologien LTE/5G von großem Interesse. Der Fokus liegt hier insbesondere bei Fragestellungen zur Dienstgüte und den angedachten V2X-Anwendungsfällen. Im Rahmen der Dissertation wird das Veins-Framework auf die 5G Technologie erweitert. Der Schwerpunkt liegt hier auf Mechanismen der unteren Netzwerkschichten und der angedachten QoS (Quality of Service) und Network Slicing Ansätze.

→ Mehr Informationen

Logo
Logo

(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

Abstract:

Die zunehmende Vernetzung und Digitalisierung in der Mobilitätsbranche führt zu immer komplexer werdenden Systemen und großen Datenmengen. Dies bietet Chancen und Herausforderungen und erfordert innovative Methoden zur Erforschung, Analyse, Entwicklung und Absicherung neuer Mobilitätstechnologien. Im Rahmen von ViM soll ein Plattform-Prototyp für Forschungszwecke und für die Entwicklung von innovativen Geschäftsmodellen aufgebaut werden, welche Akteuren sowohl zur Erprobung von neuartigen Mobilitätsdiensten als auch von neuartigen Fahrfunktionen auf technischer Ebene (z.B. kollaborative Fahrmanöver) dienen kann. Ziel ist die Entwicklung eines Daten- und Software-Frameworks, welches das Einbringen und Verwenden unterschiedlicher digitaler und modularer Komponenten auf Basis ihres Anwendungskontexts ermöglicht, sowie Mobilitätsdaten, unter Berücksichtigung etwaiger proprietärer Bestandteile, als Grundlage für Forschung, Dienstleistungen und Applikationen bereitstellt. Die Plattform erlaubt insbesondere die Kombination von realen und simulierten Daten zur Generierung einer realitätsnahen virtuellen Welt. Datenanalyse-Module ergänzen dieses Abbild und helfen dieses zu bewerten und zu interpretieren.
Der Lehrstuhl für Rechnernetze und Kommunikationssysteme ist in alle Arbeitspakete involviert und leitet insbesondere das Arbeitspaket Simulation.

Externe Partner:

  • BMW AG - Bayerische Motoren Werke / BMW Group
  • Universität der Bundeswehr München
  • Technische Universität München (TUM)

→ Mehr Informationen

(Drittmittelfinanzierte Einzelförderung)

Abstract:

Verteilte Simulationen werden häufig zur Verbesserung der Leistung oder zur Kopplung von unterschiedlichen Simulatoren verwendet. Für die Simulation von autonomen Fahrfunktionen ist diese Kopplung sehr wichtig, denn so können wiederverwendbare Simulationskomponenten für das nähere und weitere Umfeld des Fahrzeugs, für Ego- und Fremdfahrzeuge, für die Sensorik, für Abläufe in den Steuergeräten, für die Fahrzeugdynamik und für ähnliche Aspekte erstellt und gemeinsam in einer Simulation ausgeführt werden. Weiterhin bietet eine solche verteilte Simulation einen Ausgangspunkt für die Kopplung mit echten Software- oder Hardwarekomponenten (SIL bzw. HIL). Die Synchronisation in der verteilten Simulation muss die Kausalität sicherstellen: wenn es Abweichungen der Zuordnung von Simulationszeit zur Echtzeit in den Komponenten gibt, kann es zu Verletzungen der Kausalität kommen. Ein Beispiel sind kooperative Sicherheitsfunktionen, bei denen Aktionen in sehr schneller Abfolge verlaufen. Gründe für Kausalitätsverletzungen können beispielsweise nicht synchronisierte Uhren oder Verzögerungen bei der Nachrichtenauslieferung sein. Eine weitere Aufgabe der Synchronisation ist die Gewährleistung der Reproduzierbarkeit der Simulationsergebnisse. Durch Jitter in der Ausführungszeit von einzelnen Komponenten oder bei der Nachrichtenübertragung entsteht ein Nichtdeterminismus in der Ausführungsreihenfolge, der zu einem unterschiedlichen Ergebnis der Simulation führen kann.

→ Mehr Informationen

(FAU-externes Projekt)

Abstract:

 Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen.  Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl  von Verkehrssituationen, sog. Szenarien, abzuprüfen.  Dieser umfangreiche Prüfumfang lässt sich in Zukunft eigentlich nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validität und Praxisrelevanz zu erzeugen, müssen Modelle des eigenen Fahrzeugs, der Strecken und –Umgebung sowie des umgebenden Verkehrs adäquat modelliert werden.

Im Rahmen dieser Arbeit sollen Fahrsituationen, sogenannte Fahrszenarien, realer Versuchsfahrzeuge sensorisch erfasst und aufgezeichnet werden. Aus diesen Datenaufzeichnungen soll das aufgezeichnete Fahrszenario in einer Fahrsimulation nachgebildet und eine aktivierte automatisierte Fahrfunktion darin betrieben werden. Dadurch kann die Exaktheit des Simulationsmodells mit den aufgezeichneten Messdaten verglichen und validiert werden. Darüber hinaus werden so anspruchsvolle Fahrszenarien für einen Prüfkatalog gesammelt und das Fahrszenario kann mit vielen Variationen der zu simulierenden automatischen Fahrfunktion durchgespielt und verglichen werden.

Aufbauend auf einem funktionierendem Verfahren der Szenariengenerierung aus Messdaten soll ein Verfahren für gezielte Datenanalyse relevanter Szenarien  aus Massendaten hinsichtlich Kategorien, Definitionen, Trajektorien zur Erzeugung von parametrierbarer Manöverklassen systematisch erarbeitet werden.

→ Mehr Informationen

Lehrstuhl Informatik 7 (Rechnernetze und Kommunikationssysteme)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstr. 3
91058 Erlangen
  • Kontakt
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • RSS-FEED Kolloquium
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben