• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Informatik 7 CS7
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
    • Campo
    • StudOn
    • FAUdir
    • Stellenangebote
    • Lageplan
    • Hilfe im Notfall
    1. Friedrich-Alexander-Universität
    2. Technische Fakultät
    3. Department Informatik
    Friedrich-Alexander-Universität Lehrstuhl für Informatik 7 CS7
    Menu Menu schließen
    • Lehrstuhl
    • Forschung
    • Publikationen
    • Lehre
    • Kooperationspartner
    1. Startseite
    2. Lehre
    3. AI-enabled wireless networks (WS 2021/22)

    AI-enabled wireless networks (WS 2021/22)

    Bereichsnavigation: Lehre
    • Lehrveranstaltungen
    • Seminar Kommunikationssysteme (Quantum Networking)
    • Studienschwerpunkt „Informatik in der Fahrzeugtechnik“
    • Curriculum
    • Abschlussarbeiten
    • Prüfungen

    AI-enabled wireless networks (WS 2021/22)

    Vorlesung

    Dr. Mehdi Harounabadi

    • E-Mail: mehdi.harounabadi@iis.fraunhofer.de

    Details

    Veranstaltungsart Vorlesung (2 SWS)
    ECTS Credits 2,5
    Sprache Englisch
    Vorlesung Fr, 15:00 – 16:30, Raum 00.151-113 UnivIS , ggf. online

    This course introduces machine learning algorithms such as supervised, unsupervised, reinforcement, deep, and federated learning and their application in the next generation wireless and mobile networks. Different ML use cases are explained which solve problems in different layers of the protocol stack from the physical layer to the application layer. The course includes the following topics:
      1. Introduction to machine learning algorithms
      2. Python programming language and its ML tools
      3. AI-enabled wireless and mobile networks
      3.1 Cellular networks and ML use cases
      3.1.1 History of 2G to 4G, 5G and 6G vision
      3.1.2 ML use cases in physical, MAC and higher layers
      3.2 5G-V2X (cellular-V2X) and ML use cases
      3.2.1 Sidelink communication as the key enabler
      3.2.2 5G-V2X features and use cases
      3.2.3 ML use cases in 5G-V2X
      3.3 Intelligent wireless networks
      3.3.1 Cognitive radio networks
      3.3.2 ML use case in wireless networks
      4. Standardization activities on AI-enabled wireless networks
      4.1.1 3GPP and 5GAA
      4.1.2 ETSI Zero touch networks

    Exercises:
    Literature review on the application of machine learning in wireless networks
    The exercise of this course includes a literature review research project where students work individually on a relevant topic. The steps to accomplish the research project are as follows:

      A. Select a topic relevant to the application of ML in wireless networks and register it by email
      B. Search for the relevant papers and make a list of papers
      C. Study the papers and prepare a summary
      D. Present the outcomes

    Each student should present her/his research study in an intermediate and a final presentation. A summary paper should be written following the „survey papers guideline“ using IEEE format.
    The grade of the research project will be considered as a „Bonus point“ (up to 20%) for the final grade.

    • Dahlman, Erik, Stefan Parkvall, and Johan Skold. 5G NR: The next generation wireless access technology. Academic Press, 2020.
    • Sun, Yaohua, et al. „Application of machine learning in wireless networks: Key techniques and open issues.“ IEEE Communications Surveys and Tutorials 21.4 (2019): 3072-3108.
    • Harounabadi, Mehdi, et al. „V2X in 3GPP Standardization: NR Sidelink in Release-16 and Beyond.“ IEEE Communications Standards Magazine 5.1 (2021): 12-21.
    • Xie, Junfeng, et al. „A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges.“ IEEE Communications Surveys and Tutorials 21.1 (2018): 393-430.

    Weitere Informationen

    • AI-enabled wireless networks UnivIS
    • AI-enabled wireless networks (WS 2021/22) StudOn
    Lehrstuhl Informatik 7 (Rechnernetze und Kommunikationssysteme)
    Friedrich-Alexander-Universität Erlangen-Nürnberg

    Martensstr. 3
    91058 Erlangen
    • Kontakt
    • Impressum
    • Datenschutz
    • Barrierefreiheit
    • RSS-FEED Kolloquium
    • Facebook
    • Facebook
    • RSS Feed
    • RSS Feed
    • Twitter
    • Twitter
    • Xing
    • Xing
    Nach oben